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CHAPTER 1. Introduction 

1.1. Research Goal 

This study had the following objectives: 

• Investigate different types of artificial intelligence tools that can be used to model the 

performance decay in asphalt pavements. 

• Develop artificial intelligence models using structural, environmental, and traffic data to 

predict pavement performance indicators. 

1.2. Research Background and Problem Statement  

Pavement management systems often use performance decay models to predict the future 

performance of pavements so that agencies can plan appropriate maintenance and extend the life 

of given sections. The performance of asphalt pavements is affected by various distresses such as 

cracking, rutting, and moisture damage. Their performance can also be affected by the material 

properties and thickness of each pavement layer, the traffic on the pavement, and environmental 

factors such as temperature and moisture. The layers of asphalt pavements include the asphalt 

layer, the base layer, the subbase layer, and the subgrade layer. The most significant material 

property of these layers is the modulus of elasticity. The modulus represents the stiffness of a 

pavement and characterizes its ability to withstand permanent deformation (Hossain et al., 2017). 

Permanent deformation is one of the many factors that affect a pavement’s condition. 

Pavement performance or condition is the ability of that pavement to serve traffic. There 

are many ways to measure the performance or condition of a pavement. Two of the most popular 

methods are the International Roughness Index (IRI), which is an indicator of ride quality, and 

the pavement condition index (PCI), which scores pavements on a zero to 100 scale intended to 

capture overall pavement quality. Cracking is one of the major distresses that can be inspected 

visually. Visual inspection involves inspectors quantifying the number of cracks or the severity 

of cracks on a pavement segment and then translating that information to a rating. There are 

many types of cracking, such as fatigue cracking, longitudinal cracking, transverse cracking, and 

thermal cracking (Hossain et al., 2017). These distresses must be managed to ensure that the road 

remains serviceable.  

Decisions about the management of different pavements within pavement management 

systems are reliant on the methods used to report and predict pavement conditions. Pavement 
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management systems that can effectively make these decisions support better use of public 

funds, better distribution of resources, and well-maintained roadways (Salini et al., 2015).  

Conducting maintenance activities on pavement sections is essential for their 

performance. There are optimal times to perform maintenance that will reduce costs over time 

and also increase the longevity of pavement sections. Costs can be reduced by performing minor 

treatments on a pavement before major, more costly treatments are needed to restore it. 

However, performing these treatments too early can lead to an increase in cost because then they 

are done more frequently than necessary. The optimal times are based on the deterioration in 

performance of a given section.  

Deterioration of pavements can be difficult to predict because numerous factors affect 

pavement condition. So a better understanding of this deterioration can aid pavement engineers 

in making better decisions regarding maintenance activities. Therefore, there is a need to develop 

models that can predict pavement conditions over time. 

1.3. Research Approach  

The objectives of this project were achieved by conducting the research tasks discussed 

below. 

1.3.1.  Task 1. Literature Review   

The objective of this task was to conduct a comprehensive literature review of different 

types of artificial intelligence and their applications in civil and pavement engineering. The main 

subjects of the literature review were as follows:  

• Different measures of pavement deterioration and how they are related to pavement 

management 

• Various artificial intelligence methods and how those methods operate 

• Applications of different artificial intelligence models in pavement engineering 

• Applications of different artificial intelligence models in civil engineering. 

1.3.2. Task 2. Collect Data 

Data from several theoretical and field pavement segments were collected to create 

multiple datasets that could be used to train and test different models. Theoretical datasets were 

generated with the Pavement ME software and the Modulus 7 software so that a large range of 

sections could be represented. Field datasets were collected from the Long-Term Pavement 

Performance (LTPP) Program, in addition to falling weight deflectometer (FWD) and traffic 
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speed deflectometer (TSD) deflection data that were collected in Idaho to validate that the 

models could be applied in practice. 

The collected datasets were edited and organized so that they could be used to train and 

test the models. Artificial intelligence models are sensitive to data format, so proper organization 

of the datasets was vital to their performance. Descriptive parameters in the datasets were 

converted to numerical values to simplify the code used in the models. Cumulative traffic data 

were also compiled into the datasets based on the yearly traffic data provided. The datasets were 

also organized so that each time measurement for a given section was treated as a separate data 

point instead of as a collective section. This was done to develop performance decay curves for 

pavement sections and to use the largest amount of data possible to train and test the models. 

1.3.3. Task 3. Analysis of the Results  

Three different types of artificial intelligence were evaluated to determine which 

approach would perform best for the remaining tasks. The models selected for this investigation 

were a neural network, a random forests regression, and a support vector machine. These three 

models were selected as a result of information gathered in the literature review that supported 

their potential. These models were developed by using the same theoretical dataset generated by 

the Pavement ME software, and all were used to predict rutting. This allowed for direct 

comparison of their performance; the best performing model type was then used to develop the 

remaining models in this study. 

The datasets collected in Task 2 and organized in Task 3 were used to develop multiple 

artificial intelligence models that could predict pavement performance measures and back-

calculate the moduli of pavement layers. Performance was measured with IRI, total rutting, 

rutting of only the asphalt layer, and cracking. Models based on theoretical and field datasets 

containing structural, environmental, and traffic data were developed to predict these 

performance indicators. Performance decay curves were also obtained for the applicable models. 

1.3.4. Task 4. Final Report  

The research team prepared this final report to provide background on the subject, 

information on the selected chemical products, the testing matrix, the results, and 

recommendations. 
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1.4. Organization of This Report 

This report documents the research methodology, presents the results and analysis, 

summarizes the findings, and provides recommendations for future studies and implementation. 

The report has five chapters.  

Chapter 2 details the main findings from the literature review concerning different 

methods of artificial intelligence, the application of those methods to civil and pavement 

engineering, and how pavement deterioration relates to pavement management. 

Chapter 3 provides information on the different datasets used in this study. It details the 

collection of these datasets and describes the different parameters found within the data. As this 

research study used multiple sources of both theoretical and field data, this chapter reviews the 

differences in these datasets to explain the purpose for using multiple sources of data. 

Chapter 4 discusses the results for the artificial intelligence models developed using data 

comprising the material properties and structural information for each pavement section. These 

models were developed to predict various performance indicators of asphalt pavements, and 

different models were developed using theoretical and field datasets. This chapter also 

investigates different methods of artificial intelligence by comparing three models that were 

trained on the same dataset and developed to predict the same performance measure. This 

investigation was performed to determine the best method of artificial intelligence to use for the 

other models. 

Chapter 5 summarizes the main findings and conclusions of this study and provides 

recommendations for future research. The appendices provide examples of the datasets and the 

Python codes for the artificial intelligence models used in this research. 
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CHAPTER 2. Background  

2.1. Pavement Management 

2.1.1. Pavement Characteristics and Deterioration 

Asphalt pavements consist of several layers, including the asphalt layer at the top, 

followed by the base layer, subbase layer, and subgrade layer. The overall performance of the 

pavement is affected by the material properties of each layer, the thickness of each layer, applied 

traffic, and environmental conditions. Asphalt pavements experience various distresses in the 

field, including rutting (or permanent deformation), cracking, and moisture damage. Rutting, 

cracking, and roughness increase with time. Pavement engineers conduct regular distress surveys 

to rate the conditions of pavement and determine the need for surface treatments. Performance 

decay models are often used in an asset management system to predict future performance in 

response to maintenance and rehabilitation treatments.   

Numerous factors cause pavement deterioration. In most cases, traffic level has a 

significant impact on pavement deterioration. Pavement characteristics such as the layers’ elastic 

moduli and strength affect how the pavement deteriorates. Environmental factors also influence 

this deterioration. Environmental factors include moisture, how often freeze-thaw occurs, 

whether the sections are underlain with permafrost, and many others (Hossain et al., 2017). 

2.1.2 Measures of Pavement Condition and Pavement Distresses  

There are many ways to measure the performance or condition of a pavement. One of the 

most popular methods is the International Roughness Index (IRI), which can be used to indicate 

ride quality. The IRI is calculated from longitudinal road profiles and is typically reported in 

measurements of length per length such as inches per mile (Hossain et al., 2017).  

Another common measure of pavement performance is the pavement condition index 

(PCI). The PCI is scored on a scale of zero to 100 and is intended to reflect the pavement’s 

overall condition. This score is determined on the basis of visual inspection of the number and 

types of distresses in a pavement (Kumar et al., 2021). 

Cracking is one of the major distresses that can be inspected visually. There are many 

types of cracking, such as fatigue cracking, longitudinal cracking, transverse cracking, bottom-up 

cracking, and top-down cracking. Fatigue cracking, also known as alligator cracking, is caused 

by inadequate structural support for the given loading and consists of a series of interconnected 

cracks that may look like the back of an alligator. Longitudinal cracking runs parallel with the 
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centerline of the pavement. It may be caused by reflective cracking, poor joint construction, or 

top-down cracking. It can be measured for both the wheel-path and non-wheel-path. Transverse 

cracking, on the other hand, runs perpendicularly to the centerline of the pavement. This is 

usually a type of thermal cracking and can be caused by the shrinkage of the hot-mix asphalt 

(HMA). Top-down cracking starts at the surface of a pavement and begins to progress deeper 

within the HMA layer of the pavement. Bottom-up cracking begins to form at the bottom of the 

HMA layer and then travels upward toward the surface (Pavement Distresses, 2006). 

It is important that a pavement management system (PMS) be used to collect, report, and 

predict the conditions of pavement sections so that agencies can make the best decisions to 

manage those sections. Good pavement management systems can save public funds (Salini et al., 

2015). At a network level, this can only be achieved through proper planning. If the PMS offers a 

good prediction of what pavement sections’ conditions will be in the coming years, it will greatly 

aid the planning process. This allows for a better distribution of resources, better use of public 

funds, and better maintained roadways (Salini et al., 2015). 

2.2. Different Artificial Intelligence Methods 

2.2.1. What is Artificial Intelligence? 

Artificial intelligence (AI) is a branch of computer science in which computer programs 

perform tasks and solve problems that would typically require human intelligence (Artificial 

Intelligence (AI) vs. Machine Learning, 2022). The term was first coined in 1956 by a group of 

researchers at Dartmouth College (Dick, 2019). Since then, artificial intelligence has advanced 

and changed immensely. Today, there are many different subsets of AI, and the term AI is often 

used interchangeably with the term machine learning, although they are not synonymous. 

Machine learning is a subset of AI in which a program automatically learns insights and 

recognizes patterns in data through algorithms and then applies that learning to make 

increasingly better decisions (Artificial Intelligence vs. Machine Learning, 2022).  

There are three groups of machine learning models: supervised learning, unsupervised 

learning, and reinforcement learning (Justo-Silva et al., 2021). The type of machine learning 

model that was investigated in this study was supervised learning. Supervised learning models 

use input and output data to make predictions for new data and are typically “used for project-

level or network-level pavement management” (Justo-Silva et al., 2021).  
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Most machine learning techniques split data into training and testing sets. The model uses 

the training data to learn, and the testing set is used to validate that model to see whether it can 

accurately model unseen data. The percentage of data used in each of these sets is dependent on 

the variability of the data as well as the number of samples available.  

2.2.2. Artificial Neural Networks (ANN) 

An artificial neural network (ANN) model is a machine learning technique that uses 

supervised learning to solve problems. ANNs are designed to mimic the way neurons fire in the 

human brain, and they are a black box in which the operator does not get to see the model’s 

decision-making process. They comprise an input layer, a specified number of hidden layers, and 

an output layer all containing nodes. These nodes, mimicking neurons, connect to one another, 

and each has a designated weight and threshold. If the node’s output is above the threshold, then 

the node activates and sends data to the next layer (Bishop, 1994).  

ANNs can have issues with overfitting. Overfitting describes a model that does not 

generalize data well. This is indicated by high accuracy with the training set and significantly 

decreased accuracy with the testing set. It is difficult to deal with overfitting in ANNs because 

they have a slow runtime. This slow runtime is due to their iterative process, and this process 

contributes to ANNs’ vulnerability to overfitting.  Dropout can be used to reduce overfitting and 

thus can improve neural networks. Dropout has been found to improve neural networks in object 

classification, speech recognition, analysis of computational biology data, digit recognition, and 

document classification. However, dropout increases the training time of the network by two to 

three times in comparison to a standard ANN with similar architecture (Srivastava et al., 1970).   

2.2.3. Decision Trees and Random Forests  

Decision trees consist of nodes that split into two or more directions depending on the 

given input. The nodes split a designated number of times to reach a conclusion. Decision trees 

have been used in applications outside of AI, but they are also a popular machine learning 

technique. On the basis of the inputs and number of splits decided by the operator, the decision 

tree finds the best criteria for these splits to come up with the most accurate results. Decision 

trees are commonly used for classification problems, and they have the benefit of giving the 

operator more knowledge about how the decision was reached (Rokach and Maimon, 2005). 

Random forests algorithms are like decision trees, but instead of generating only one tree, 

they generate multiple trees. They then generate an output based on the majority voting or 
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average answer of all the decision trees for classification or regression problems, respectively. 

They overcome some of the issues with decision trees such as overfitting and not being robust to 

outliers (Gong et al., 2018). 

2.2.4. Support Vector Machines 

Support vector machines (SVM) are another machine learning technique. They operate 

by creating hyperplanes that have an axis for each input parameter, and then they find the 

optimal plane for identifying and predicting points. The SVM algorithms are typically robust to 

outliers and have good generalization capabilities. They were initially developed for 

classification problems, but they can also be used for regression (Hasan and Ziari, 2009).  

2.2.5. Expert Systems and Fuzzy Logic 

Expert systems are a form of machine learning often combined with fuzzy logic. Expert 

systems are simply systems designed to mimic a human expert, and fuzzy logic is mean to 

resemble human reasoning. Fuzzy logic works by using true/false statements on multiple 

different levels to achieve the output. It can often aid in confronting uncertainty (Kaur and 

Pulugurta, 2008). Expert systems are efficient in problem solving because they use expert 

knowledge and human reasoning that cannot be implemented analytically because of the 

complex nature of the problems (Ismail et al., 2009). 

2.2.6. Other Types of Machine Learning 

There are countless different machine learning algorithms, such as genetic algorithms, 

long-term/short-term memory (LSTM), intelligent search algorithms, structural equation 

modeling (SEM), and group method of data handling (GMDH). Genetic algorithms are intended 

to mimic natural selection (Elhadidy et al., 2015). LSTM models are typically used for time 

series data, and they work by forgetting/removing unhelpful information, inputting useful 

information, and outputting the most important information (Hosseini et al., 2020). Intelligent 

search algorithms work by finding the shortest path between two cells on a grid (Tohidi et al., 

2022). SEM is like factor analysis combined with multiple regression analysis, used to measure 

the relationship between independent variables and dependent variables (Chen et al., 2016). “The 

basic GMDH algorithm is a procedure for constructing a high-order polynomial of the form 

which relates m input variables x1, x2, ..., xm to a single output variable, y” (Ziari et al., 2015). 
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2.3. Applications of Artificial Intelligence in Civil Engineering 

2.3.1. General Information About Artificial Intelligence Usage in Civil Engineering Applications 

Artificial intelligence models are gaining popularity in civil engineering applications and 

research studies have been conducted to explore various types of machine learning and how they 

can be used in various applications. A review article by Lu et al. (2012) discussed various 

methods of artificial intelligence that can be used in civil engineering. It summarized different 

methods of evolutionary computation, swarm intelligence, neural networks, fuzzy systems, 

expert systems, and a few methods that cannot be placed in a category. It also discussed the 

future trends for artificial intelligence, such as further development of fuzzy systems, the 

possibility of hybrid systems, and increased research in possible applications for these systems.   

Justo-Silva et al. (2021) summarized information about the differences in various AI 

techniques for pavement performance prediction models. They reviewed many models used in 

the development of pavement performance prediction models (PPPM).  PPPMs relate pavement 

condition to a set of variables such as traffic loading, environmental conditions, etc. PPPMs can 

be classified by the type of formulation, conceptual format, application level, and types of 

variables. Machine learning algorithms find generalizable predictive patterns in datasets, and can 

be classified as either supervised learning, unsupervised learning, or reinforcement learning. 

Both project-level and network-level pavement management applications can utilize supervised 

learning. Unsupervised learning can be used in exploratory and clustering analysis applications, 

and reinforcement learning can aid decision makers for both project-level and network-level 

pavement management (Justo-Silva et al., 2021). Table 2.1 summarizes the trade-off 

characteristics for various algorithms examined by Justo-Silva et al. (2021).   

A study conducted by Piryonesi and El-Diraby (2021) compared the accuracy of various 

forms of AI when they were applied to predict the pavement condition index. They used the 

LTPP dataset to predict the reduced PCI values in the next two to six years based on the current 

PCI and climate data. They chose this timeframe because roads without maintenance for over six 

years often begin to deteriorate. The training set contained over 3,000 samples in their study. 

They demonstrated that their models were more accurate than previous models because of the 

size of the dataset in comparison to those of other studies.  The larger dataset allowed the models 

to see a greater range of possibilities, which increased their overall accuracy. The highest 

accuracy was found by assembling machine learning algorithms based on decision trees and a 
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naïve Bayes classifier coupled with kernel estimation. They calculated the current PCI based on 

the distresses and their severity levels, and they did not use highway sections that had undergone 

maintenance during the prediction horizon (Piryonesi and El-Diraby, 2021). 

 

Table 2.1 Trade-Off Characteristics of Some Machine Learning Algorithms  

(after Justo-Silva et al. 2021). 

Type of Algorithm 
Prediction 

Speed 

Training 

Speed 

Memory 

Usage 

Required 

Tuning 
 

Linear Logistic 

Regression 
Fast Fast Small Minimal  

Linear Support Vector 

Machines 
Fast Fast Small Minimal  

Decision Trees Fast Fast Small Some  

Nonlinear Support Vector 

Machines 
Slow Slow Medium Some  

Nonlinear Logistic 

Regression 
Slow Slow Medium Some  

Nearest Neighbor Moderate Minimal Medium Minimal  

Naïve Bayes Fast Fast Medium Some  

Ensembles Moderate Slow Varies Some  

Neural Networks Moderate Slow 
Medium to 

Large 
Significant  

 

2.3.2. Artificial Neural Networks in Pavement Engineering Applications 

ANNs have been used in several applications of pavement engineering. For example, a 

case study conducted in Montreal by Zhang et al. (2021) created a convolutional neural network 

model for pavement distress detection. The study investigated an automated methodology for 

pavement distress detection and type classification by using low-cost video data paired with 

convolutional neural networks.  The study was divided into four steps: data collection, dataset 

preparation, image labeling, and building deep neural networks to learn the patterns of different 

distress types in pavement images. The data used in this case study were images taken from a 

GoPro camera mounted on the front of a vehicle that took a photo every second.  For this method 

to work with a deep learning model, it was necessary that the models had enough examples of 

each distress so they could correctly identify the distress based on the division categories. 
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Distress classes were categorized as patching, pothole, linear crack, and network crack (Zhang et 

al., 2021). The results of this study found that in comparison to a laser crack measurement 

system (LCMS), the ANN system achieved similar accuracy while being more economical and 

simpler to replicate. Also, the results showed that the use of an embedded system integrated with 

a deep neural network could be installed on vehicles and used for automatic pavement distress 

type detection as well as for classification of road facilities. The proposed system utilized a 

sports camera that could be easily installed on any vehicle and could be used in any location 

(Zhang et al., 2021). 

Issa et al. (2021) used this type of model to predict the pavement condition index. They 

predicted PCI values based on data about pavement distresses, including the density of 

distresses, the severity of distresses, and the number of manholes present. There were four input 

variables: stress type, stress severity, section width, and number of manholes per section.  This 

system was coded with 41 neurons in the input layer once redundant variables had been 

removed.  This approach yielded results of an average of 25 percent standard error across all 

groups for predicting PCI, with R2 values of 0.98 or higher for every group (Issa et al., 2021). 

Another study by Dimeter et al. (2018) used an artificial neural network to calculate 

Global Pavement Index (GPI) and assign an appropriate maintenance strategy. They took 

measurements of various pavement parameters such as longitudinal evenness, rut depth, texture 

depth, surface cracks, and patches. These were obtained from national roads with a total length 

of 481.3 km, which were then divided into approximate 1-km sections (471 sections total).  They 

divided these into three separate databases.  The first database calculated GPI on the basis of IRI, 

rut depth, mean profile depth, cracks and patches (expressed as percentage of area affected).  The 

second database determined a maintenance strategy based on the same parameters as the 

previous database. The final database was an ANN that was used to calculate both the GPI and a 

maintenance strategy, and the results of this database were compared to the results of the 

previous two. The results showed that the ANN was able to accurately predict GPI 87 percent of 

the time and was able to choose the correct maintenance strategy 95 percent of the time (Dimeter 

et al., 2018). 

An ANN does not have to be created from scratch. Issa et al. (2021) used the neural 

network toolbox available in MATLAB (2015 version) to train a model to predict PCI. They had 

roughly 400 sections that were 10 km long. They evaluated three different ANN algorithms to 
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predict PCI with various pavement distresses. The highest R value they achieved was 89 percent 

and the lowest mean squared error value was 4 percent. They reiterated that models can be 

improved by adding more data points and by incorporating other factors such as climatic 

condition, traffic volume, etc. (Issa et al., 2021). 

Neural networks can also be used to predict IRI. Hossain et al. (2017) developed a 

prediction model that was used to predict IRI solely on the basis of climate and traffic data. They 

collected these data from the LTPP database. These data were then used in an ANN designed 

with the neural network toolbox in MATLAB. The ANN model was trained using half of the 

climate, traffic, and IRI data, and the other half of the data was used to validate the model. The 

model was validated by comparing the IRI prediction results from the ANN with the measured 

IRI values for flexible pavements. The ANN was a feed-forward back-propagation model. This 

model type was chosen because of its simplicity in training multiple inputs. The researchers were 

able to achieve a high correlation between the LTPP data and the model predictions (Hossain et 

al., 2017). 

An advantage of neural networks is that they can analyze large amounts of data. 

Shahnazari et al. (2012) conducted a study in which they used a database comprising PCI results 

for over 1,250 km of highways in Iran, and they used 12,487 segments of those highways to 

develop the models. They used both an ANN-based model and a Gaussian Processes (GP)- based 

model to analyze the data. The inputs for these models were representative of the type, severity, 

and quantity of the distresses, and the output was a PCI estimation. They found that cases with a 

PCI value below 40 had relatively larger prediction errors than the remaining cases, which was 

likely due to a higher concentration of cases with PCI values above 60. Despite this increase in 

errors for lower PCI values, the errors remained within an acceptable range (Shahnazari et al., 

2012). 

Another study by Sollazzo et al. (2017) examined 342 different test sections from almost 

all the states available in the LTPP database. The sections they focused on were asphalt concrete 

sections, and they excluded maintenance and rehabilitation operations from the dataset (they 

considered only measurements for each section until the first maintenance operation was 

performed). For these sections, they considered 13 different parameters. The parameters were 

total pavement thickness; asphalt layer thickness; average annual equivalent single axle load 

(ESAL) values in the LTPP lane; average annual estimated daily number of trucks in the LTPP 
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lane; average temperature (mean of annual average temperatures in chosen years); standardized 

temperature range; average number of days with an average temperature above 32 degrees 

Celsius; average number of days annually with a temperature below freezing; time passed since 

the first profilometer survey; first measured IRI; IRI at a specific time for each section, which 

was an average of the left and right wheel paths; SNeff at a specific time; and average pavement 

surface temperature during the deflection test. Sollazzo et al. (2017) trained three ANNs, with 

each ANN developed for a different temperature range. All these ANNs contained 25 hidden 

neurons, and the records related to them were divided such that 70 percent of the data was used 

in the training group, 15 percent was used in the validation group, and the remaining 15 percent 

was used in the testing group. The training of these ANNs was performed with the Levenberg-

Marquardt algorithm and measured by mean-squared error (Sollazzo et al., 2017). 

Another parameter that can be modeled with ANNs is the present serviceability index of 

flexible pavements. Terzi (2007) gathered performance data from AASHTO test results that 

contained 74 sections. From these data, the researcher chose the input variables of slope 

variance, rut depth, cracking, patches, and longitudinal cracking. The output was chosen as panel 

data, and the results from three different ANNs were compared. The best results achieved an R2 

of 0.99 for the training set and 0.87 for the testing set (Terzi, 2007). 

Artificial neural networks have also been used in pavement engineering to study the 

correlation between various pavement distresses and overall pavement roughness. Lin et al. 

(2003) examined the correlation between ten different types of common pavement distresses in 

Taiwan and pavement roughness. This study was conducted by using a back-propagation neural 

network.  The ten types of distresses they investigated were rutting, alligator cracking, other 

cracking, digging/patching (digging due to pipe installation, electrical work, etc.), potholes, 

corrugation, manholes, stripping, patching, and bleeding. They used 125 sections that were each 

1 km long. These sections included roadways on both highways and country roads. Information 

on these sections was collected by an automatic road analyzer (ARAN). Given these data, the 

neural network was able to use 100 records of training data to achieve a root mean square of 

0.068 and a correlation coefficient of 0.84. For the testing records, they used 25 sections and 

were able to reach prediction R2 values of 0.94, which exceeded that of the training data. The 

results of this study demonstrated that the IRI can be used to evaluate the quality of pavement 
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projects and can fully represent the pavement deterioration process. This indicated that IRI can 

be used as the basis for road maintenance ranking evaluation (Lin et al., 2003).  

Lou et al. (2001) developed back-propagation neural network (BPNN) models to forecast 

the short-term variation of the crack index (CI) of Florida’s highway network. They used both 

single-year and multi-year BPNNs in their study. They gathered the data from the Florida 

Department of Transportation’s pavement performance database, which included data from the 

previous 20 years. The network they developed contained an input layer, one hidden layer, and 

an output layer. The input layer, hidden layer, and output layer had seven neurons, 12 neurons, 

and a single neuron, respectively. This network was designed to forecast the CI for the following 

year when given data from the previous three years (Lou et al., 2001). 

2.3.3 Decision Trees and Random Forests Usage in Pavement Engineering Applications 

Rajagopal (2006) used a decision tree method to predict pavement performance for the 

city of Cincinnati. This research used the Information Management System (IMS) database and 

the ViPERS database as sources for all their data. These data were used to predict (PCR) in the 

first model. The decision tree was used to select a reasonable maintenance or rehabilitation 

alternative for each project. This would assist engineers in determining the best possible strategy 

for maintenance. The decision tree method split on the basis of the PCR value. Different 

maintenance strategies were then suggested based on that split (Rajagopal, 2006). 

Like decision trees, random forests or random decision trees work by constructing a 

group of decision trees and then forecasting the classification or mean regression of the 

individual trees. They are ensemble learning methods that can be used for regression, 

classification, and other tasks. Gong et al. (2018) developed a random forest regression model to 

predict pavement IRI based on various inputs. These inputs included various distress types, 

traffic history, structural information of the pavement, and climate conditions. They used a 

dataset comprising over 12,300 distress data samples, 19,900 IRI data samples, and 28,7000 

rutting data samples that were collected from the LTPP database (Gong et al., 2018). Using 18 

variables from these data, the researchers were able to achieve an R2 of 0.998 for the training set. 

This was 2 percent higher than that for test set, in which the R2 was 0.975, which was still very 

high. A lower R2 in the testing set could have been an indication of overfitting, but because both 

R2 values were so high, this did not pose a serious problem (Gong et al., 2018). 
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Another variation of decision trees is the gradient boosted decision tree (GBDT). Guo et 

al. (2021) used a GBDT to predict IRI and rut depth. They gathered their data from the LTPP 

database, which comprised more than 1,600 records.  The inputs chosen from this database 

covered the climatic, traffic, and structural factors for each section. The authors noted that the 

ANN and SVM methods could not determine which input factors had the greatest influence on 

the result and whether their impact was positive or negative. They addressed this issue by using 

the lightGBM package in Python (a gradient boosted decision tree framework) to develop their 

prediction model. These can produce better results because they construct multiple learners and 

combine them to optimize the results as opposed to using only a single learner (Guo et al., 2021).  

2.3.4 Fuzzy Expert Systems Usage in Pavement Engineering Applications 

Fuzzy expert systems are another popular form of machine learning that is often used in 

engineering applications, and they can even be combined with other forms of machine learning 

to improve the accuracy of those models. Kaur and Pulugurta (2008) created a fuzzy decision 

tree and compared its accuracy to that of logistic regression. They considered three separate 

fuzzy models based on subgrade type (clay, sandy clay, and sand). Other parameters of the fuzzy 

model included surface thickness, age of the road, and total traffic count. They used an adaptive 

neuro fuzzy inference system (ANFIS) to develop a pavement performance prediction model. 

The results concluded that the fuzzy decision tree had a higher accuracy than the logistic model.  

The fuzzy decision tree was also easier to develop than the logistic model (Kaur and Pulugurta, 

2008). 

Ismail et al. (2009) summarized the development and potential usage of expert systems in 

pavement management. They suggested that the use of expert systems can offer significant 

advantages over traditional computerized models.  This is possible because expert systems are 

efficient in problem solving because they utilize human reasoning and extensive knowledge from 

experts that are too complex to be represented in an analytical fashion (Ismail et al., 2009).  

2.3.5 Other Artificial Intelligence Model Usage in Pavement Engineering Applications 

Genetic algorithms (GAs) have been used in pavement condition rating. Elhadidy et al. 

(2015) assessed pavement condition by using a zero to four scale that was developed by the 

Federal Highway Administration. This system assumed that pavements were serviceable until the 

rating reduced to a value of one, which indicated poor condition and that major maintenance was 

needed. A rating of zero would indicate that the pavement had failed and was beyond corrective 
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action. They used a Markovian deterioration model in this research to estimate the future decline 

in pavement condition. This was necessary for a PMS to be able to select an appropriate 

rehabilitation strategy. Through these methods, they were able to obtain the optimal maintenance 

actions based on the prediction of the pavement condition (Elhadidy et al., 2015). 

Hosseini et al. (2020) conducted a study in Iowa that used deep learning to model 

pavement deterioration. The data in this study were obtained between 1998 and 2018 and 

comprised dates of construction, dates of reconstruction, section identifiers, information about 

the highway system classification, pavement ride quality data, and pavemented distress data that 

were automated (Hosseini et al., 2020). The pavement types studied were asphalt concrete (AC), 

Portland cement concrete (PCC), and composite (COM) pavements. Pavement distress 

information was collected, including rutting, cracking, transverse cracking, longitudinal 

cracking, alligator cracking, wheel-path cracking, and patching. The severity levels of these 

distresses were also determined. Ride quality was also characterized by using the IRI for all 

pavement types. After these data had been collected and organized, condition indices were 

estimated by using riding index, rutting index (AC and COM only), cracking index, and faulting 

index (PCC only). The researchers concluded that prediction accuracy was higher for AC 

pavements with the  long-term/short-term memory (LSTM) model than with the individual DOT 

regression models (Hosseini et al., 2020).  

Tohidi et al. (2022) used intelligent search algorithms in the cost optimization of road 

pavement thickness design. This study used optimization techniques to find a systematic solution 

for a variety of decision-making problems so that an optimal solution could be found that 

required spending as little time as possible on calculations. The dataset used contained 

classification of the vehicles, their weight and axle properties, the tolerable range of thickness for 

different pavement layers, the equivalent load factor for different types of axles, the level of 

reliability, the standard deviation, and the ultimate serviceability index. Through a comparison of 

various techniques, the article suggested that particle swarm optimization was superior to a GA 

for pavement system management applications. 

Bianchini and Bandini (2010) combined multiple forms of AI to improve the accuracy of 

a model. They used fuzzy theory to perform the reasoning part and an ANN to determine the 

numerical components of the membership functions through an adaptive process extracted from 

the data. They used the MnROAD test site database available on Infopave as the source of input 
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and output parameters for the training and validation phases. They chose seven input variables, 

including the surface curvature index, the deflection measured at 36 inches from the point of load 

application, the area under the pavement profile, the rut depth, the percentage of the area of the 

section affected by fatigue cracking, the thickness of the asphalt pavement layer, and the traffic 

in terms of ESALs.  They had different models for different seasons (deep frost, beginning of 

spring, late spring, summer, and fall). The accuracy of their results was shown as goodness of fit 

statistics, and most of the R2 values for their models ranged from 0.987 to 0.809 (Bianchini and 

Bandini, 2010). 

Chen et al. (2016) examined another form of AI, structural equation modeling (SEM), to 

develop a distress condition index of asphalt pavements. SEM deals with the relationship 

between observed variables measured to reflect latent variables and the actual latent variables 

using a statistical approach (Chen et al., 2016). SEM comprises two major components: the 

measurement model and the structural model. The measurement model is used to determine how 

well latent variables are measured by various observed variables. The structural model describes 

how the latent variables relate to each other. They had to modify this model to improve the 

goodness of fit until it was deemed acceptable (Chen et al., 2016).  For this model, they chose 

their latent variable to be the overall pavement condition index. Other factors such as pavement 

age, material, layer thickness, environmental factors, and traffic data were treated as endogenous 

and exogenous variables. According to their prediction model, there were twelve distress types 

that had a significant impact on expressing the latent condition index. These included fatigue 

cracking, longitudinal cracking in both the wheel path and not in the wheel path, block cracking, 

transverse cracking, patches, bleeding, and edge cracking. Rutting was also shown to be 

important, but because of a lack in rutting data in the LTPP database, it was not taken into 

consideration (Chen et al., 2016).  

Piryonesi and El-Diraby (2021) conducted a study to compare the impact of performance 

indicators on flexible pavement deterioration modeling. This study used the LTPP database to 

predict the IRI and PCI of asphalt pavements by training machine learning algorithms. From the 

LTPP database, they gathered and prepared 30,274 IRI records and 3,227 PCI records to train the 

models. The data were retrieved with structured query language (SQL) and automated with 

Python. The researchers used two decision trees, RFs, GBDTs, linear regression, and random 

forests regression algorithms. With these algorithms, the highest cross-validation accuracy they 
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were able to achieve with IRI was 0.95 and with PCI was 0.84. They noted the lack of research 

comparing how machine learning performs for IRI versus PCI and that this was likely due to a 

lack of measurements of PCI data in major databases. They indicated that the LTPP database 

does not measure it. By comparing PCI and IRI prediction results, they deduced that IRI values 

were easier to predict than PCI values. The prediction of PCI values was improved by using 

more complex algorithms. They also noted that the initial IRI value had a greater impact on the 

IRI prediction than the initial PCI did for the PCI prediction. They also noted that they were able 

to achieve the highest accuracy in a dry climate with no freezing (Piryonesi and El-Diraby, 

2021). 

Group methods of data handling (GMDH) algorithms are another form of AI that has 

been used in pavement engineering. Ziari et al. (2015) used the LTPP database to train and test 

this algorithm. They considered only asphalt concrete pavement  on a granular base for this 

research. They also selected pavements that had not received any maintenance or rehabilitation 

because they would have a continuous change in IRI. Then they eliminated any sections that had 

an average annual daily traffic (AADT) of greater than 1,000 or less than 100 in their life cycle. 

Given the remaining dataset, they chose the nine input variables of AAT, AAP, average annual 

daily truck traffic (AADTT), AADT, PT, ESALs, and ST. They chose the output variable to be 

IRI. Once all these parameters had been determined, they prepared 26 sections comprising 206 

rows of annual data. They ran these data through a GMDH algorithm in MATLAB and achieved 

an R2 of 0.9 (Ziari et al., 2015). 

Hosseini (2020) used the long-term/short-term memory (LSTM) method to develop a 

pavement prediction model. This research was divided into two major parts. The first  described 

the process and outcome of deterioration modeling for three pavement types. The second 

described how the accuracy of prediction models could affect the decisions made in terms of 

cost. This study used results from a pavement prediction model developed with LSTM. Five 

scenarios were assumed, from maximum to minimum error rate, to investigate the impact that 

increasing error had on decision making. Different rates of error (10 percent, 30 percent, 50 

percent, 70 percent, and 90 percent) were added to the predicted values of performance 

indicators for each scenario. The results indicated that increased error had a significant 

correlation with the cost of maintenance activities. The researchers indicated that transportation 
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agencies need to improve the prediction accuracy of their models to reduce unnecessary costs 

(Hosseini, 2020). 

2.3.6 Artificial Intelligence Applications in Other Areas of Civil Engineering 

AI has also been used in other various applications in civil engineering. For example, 

Shaheen et al. (2009) used fuzzy expert systems as a predictive tool in construction. They 

discussed how fuzzy expert systems work best when enough expert knowledge is available. In 

contrast, they also discussed that it has a weakness when if-then rules do not have a defined 

structured approach (Shaheen et al., 2009). They described how to optimize these systems by 

using neuro fuzzy techniques that use a combination of the explicit knowledge represented by 

fuzzy expert systems and adaptive neural networks’ learning powers (Shaheen et al., 2009). They 

then described a case study on how a fuzzy expert system was used to determine tunneling time 

based on several inputs (Shaheen et al., 2009). 

Machine learning has also been used in geotechnical engineering. However, Shahin et al. 

(2009) demonstrated that there has been little improvement in ANN development since the mid-

1990s. A possible solution to this would be utilizing a systematic approach in ANN development 

to improve model performance. Since ANNs are a black box, an approach for improvement 

would need to address the determination of adequate models, choice of suitable network 

architecture, data division and preprocessing, selection of parameters that control optimization, 

model validation, stopping criteria, and other major factors. Model robustness, transparency and 

knowledge extraction, uncertainty, and extrapolation are also areas in which ANNs fall short. 

The authors stated that if these matters were addressed and improved, then ANNs would be 

considered an alternative to conventional methods as opposed to a supplementary method as they 

are currently. However, despite these flaws, ANNs have had success in geotechnical engineering 

and other disciplines. They have been used to model axial and lateral load capacities of deep 

foundations in both compression and uplift, as well as shallow foundation behavior such as 

settlement estimation and bearing capacity (Shahin et al., 2009). 

Ebid (2020) noted that over 600 papers have been published since 1984 covering topics 

concerning the application of AI in geotechnical engineering. The author discussed the various 

applications and different types of AI covered by research, and which topics and AI types were 

the most popular. This research summarized various types of artificial intelligence and discussed 

how and why ANN is the most popular technique.  It also noted how research involving artificial 



 

20 

intelligence in geotechnical engineering appears to be increasing at a near exponential rate (Ebid, 

2020). 
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Chapter 3. Selection of Datasets 

3.1 Introduction 

This study utilized multiple theoretical and field datasets to develop models that predict 

pavement performance and back-calculate the moduli of different pavement layers. The 

theoretical datasets utilized in this research covered a large number of sections with a wide range 

of properties. These types of datasets are ideal for developing artificial intelligence models 

because they introduce the models to large numbers of possibilities and allow the models to 

analyze the direct relationship between the model inputs and outputs without the inconsistencies 

found in field datasets. The models developed with these theoretical datasets allowed the 

researchers to determine the best type of models to use for similar field data because they 

indicated the models’ potential.  However, field datasets were also a necessary part of the 

research to validate the models and ensure that they could work in practice. Field datasets present 

inconsistencies in the data, and capturing these inconsistencies is important for determining the 

accuracy of performance models. 

3.2 Long-Term Pavement Performance Dataset 

The Long-Term Pavement Performance (LTPP) data are publicly available and were 

extracted from the Infopave website in 2021. The LTPP program was founded by the Strategic 

Highway Research Program (SHRP) in 1987 and is now managed by the Federal Highway 

Administration (FHWA nd). It aims to study in-service pavement sections and their performance 

to better understand why they perform the way that they do. The LTPP database contains 

information from 2,509 pavement sections throughout North America, and the LTPP program 

continues to collect data from over 700 sections(LTPP 2009).  

In this project, all of the available pavement sections from the Pacific Northwest were 

selected. These comprised 98 sections, including six sections from Alaska, 22 sections from 

Idaho, 35 sections from Montana, six sections from Oregon, 16 sections from Washington, and 

13 sections from Wyoming. From these 98 sections, eight had to be removed because of a lack of 

sufficient information regarding either the pavement structure or performance data.  

The remaining sections were all flexible pavements. For each section, climate data were 

collected regarding moisture and temperature. Each section had data for the average annual 

precipitation measured in inches, the average annual temperature in degrees Fahrenheit, the 

Freeze Index in degrees Fahrenheit times degrees days, and annual maximum and minimum 
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humidity in percentage. These climate data were summarized into four different climate zones to 

simplify the model inputs and reduce the chances of overfitting. The four different climate zones 

were wet, freeze; dry, freeze; wet, no-freeze; and dry, no-freeze.  

The sections collected from the LTPP database also included their Global Positioning 

System (GPS) coordinates measured in latitude and longitude and the date the sections were 

constructed. In addition, the years of all minor and major maintenance treatments on the sections 

were recorded, as well as the types of maintenance that occurred. Types of construction events 

included aggregate seal coat, single layer surface treatments, pothole patching, spot patching, 

crack sealing, milling off the existing asphalt layer and overlaying with a new asphalt layer, 

asphalt concrete overlay, fog seal coat, shoulder restoration, mechanical premix patch, overlay 

with hot mix recycled asphalt, and slurry seal coat. Minor maintenance treatments were not 

considered in the dataset used to train and test the models, but major maintenance treatments 

were captured by treating sections where major treatments occurred as “new” sections after the 

treatment occurred. Because an overlay would have such a major impact on the performance of 

the pavement, the age of the overlaid section was reset to zero, but the cumulative traffic on that 

section was carried over. This allowed the model to better understand the other traits of the 

sections and led to better decision making.  

The data for the pavement structure were also available for these sections. The 

thicknesses of the asphalt and base layers were recorded, as well as the types of material(s) for 

the asphalt, base, and subgrade layers. The material type of each pavement layer was used to 

represent the material properties of that layer and was represented by using a number code for 

each material type. The thicknesses of the asphalt and base layers were used as structure 

information. 

Information was also recorded regarding the traffic and usage of these sections. The 

functional class of these sections was included, which contained information regarding whether 

the section was a major or minor road, whether it was rural or urban, and whether it was 

principal or arterial. The traffic on these sections was recorded in equivalent ESALs, AADT, and 

AADTT. These traffic measurements were recorded for some of the years that the sections were 

in service. For years that traffic data were not recorded, estimations were made on the basis of 

the average traffic from the nearest previous and following years. This allowed for the 

cumulative traffic on each section to be estimated. 
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Lastly, there was also information regarding the performance of the pavement sections. 

The LTPP program collects International Roughness Index (IRI) measured in inches per mile, 

fatigue cracking measured in squared feet, longitudinal cracking for both the wheel path and 

non-wheel path measured in feet, transverse cracking measured by count, and rutting measured 

in inches. These data were available for some of the years the sections were in service. 

The data were organized into a single Excel sheet with each year containing performance 

data for each section listed in a separate row. Included on the sheet were the age of the section, 

the cumulative traffic on the section in ESALs, the climate zone, the major type of material in 

each of the pavement layers, the thicknesses of the asphalt and base layers, and the performance 

data. The performance data were used as provided, and the years for each section that did not 

contain performance information were excluded. All of the data that were not numerical were 

coded into different numerical values, and those values were used for the given parameter. Table 

3.1 shows an example of data from a few different pavement sections in this dataset that were 

used in the rutting prediction model. Labels were not included in the dataset that was entered into 

the model because they would not have any effect on the performance of the sections, but they 

were added here to allow a better review of the data. More examples of this dataset can be found 

in Appendix A.  

Table 3.1 Sample Data LTPP Dataset 

 

3.3 Pavement ME Dataset 

This dataset was a theoretical dataset generated by the AASHTOWare Pavement ME 

software. This software uses a mechanistic-empirical approach to design and analyze the 
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performance of pavements (ME Design Guide, 2008). A parametric study was performed that 

contained 243 pavement designs with different layer thicknesses and moduli, as presented in 

Table 3.2. These pavement structures represented typical pavement sections for low-, 

intermediate-, and high-volume traffic roads in Idaho. The pavement structures were generated 

on the basis of a historical database of Idaho pavement sections created in a previous study 

(Bayomy et al. 2018). The AASHTOWare Pavement ME predicted and reported the performance 

of these test sections recorded every 0.08 years for their respective 20 total years of service. This 

totaled 57,120 total data points. These sections were designed to have no maintenance activities 

during their service life so that performance decay curves could be captured accurately using 

predictions from the artificial intelligence models. They were also designed to be in the same 

location so that climate data could be excluded from the models. The Pavement ME data used in 

this research was produced in ITD RP 294 – Simplified Analysis Methods of Traffic Speed 

Deflectometer (TSD) and Falling Weight Deflector (FWD) Data.  

These sections contained information on the structure of the pavement. This included the 

thicknesses of the asphalt and base layers of the pavement measured in inches. It also included 

information regarding the material properties, such as the moduli of the asphalt, base, and 

subgrade layers measured in ksi. 

These sections also contained data on the cumulative traffic for each section. The 

cumulative traffic was measured every 0.08 years for the entire 20-year lifespan of the 

pavements, and it was measured in ESALs. These traffic measurements were compiled 

cumulatively to achieve performance decay models as a function of traffic. 

In addition to traffic, these sections also had data that measured performance with 

different parameters. The parameters used were the depth of thermal cracking in inches, the IRI 

in inches per mile, the total pavement deformation (rutting) in inches, the permanent deformation 

of the asphalt layer only in inches, the top-down fatigue cracking in percentage of lane area, and 

the bottom-up fatigue cracking in percentage of lane area.  

The data were organized into a single Excel sheet, with each time interval containing new 

performance and traffic data for each section listed in a separate row. The cumulative traffic on 

the section in ESALS, the modulus of elasticity of each of the pavement layers in ksi, the 

thicknesses of the asphalt and base layers in inches, and the performance data were included on 

this sheet. Table 3.3 shows an example of data from a few different pavement sections in this 
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dataset as they would be organized to be entered into the rutting prediction model. Labels were 

not included in the dataset that was entered into the model because they would not have any 

effect on the performance of the sections, but they were added here to provide a better review of 

the data. More examples of this dataset can be found in Appendix B. 

 

Table 3.2 Design Factors in the Parametric Study 

Traffic Level 
Thickness (inch) Moduli (ksi) 

AC Base AC Base Subgrade 

Low 2.5 8 200 15 7 

Intermediate 7 14 500 50 20 

High 10 25 1000 200 35 

 

Table 3.3 Sample Data for Pavement ME Dataset 
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Chapter 4. AI Performance Prediction Models based on Pavement Material Properties and 

Structure Information 

4.1     Introduction 

This chapter discusses how pavement materials’ properties (e.g., modulus and subgrade 

type) and structure information (e.g., number and thickness of each layer), along with field 

performance data, were used to develop various AI models to predict the deterioration of 

performance, including rutting, IRI, and cracking. Various types of AI models were examined 

and developed to determine the best model type for performance prediction. After the proper 

type of AI model had been identified, it was then modified and applied to predict various 

performance measures for both theoretical and field datasets. These models were trained on a 

randomized subset of sections in a given dataset and then were validated using the remaining 

number of sections in the test set.  

4.2 Investigation of Various AI Models 

As discussed in Chapter 2, many types of AI models have been used in civil engineering 

applications. For this study, multiple model types were tested to determine the appropriate model 

for given datasets and the nature of the problem. The first model investigated was a neural 

network. Neural networks are one of the most popular forms of AI and can be applied to a wide 

range of problems. The next model investigated was an SVM model, in particular, a support 

vector regression model. This model type was selected because these models tend to work well 

with smaller groups of data because they have good generalization capabilities and tend to be 

robust to outliers. The final model type investigated was the random forests model, in particular, 

random forests regression. This model type was selected because random forests regression 

applications have not been investigated much in civil engineering applications despite the fact 

that they can be applied to many problems and work well with many different kinds of data. All 

these models were developed using Python code executed through the Google Colaboratory 

browser.  

To determine the best model for different datasets and kinds of problems, each model 

type was developed on the basis of the theoretical data, and their ability to predict performance 

was compared with one another The data used to test these models were generated from the 

Pavement ME that included performance data for 266 pavement sections. Permanent 
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deformation or rutting predicted by using various AI models was selected as the performance 

indicator because this parameter was determined to likely be the simplest measure to predict.  

All of the models tested used as inputs material properties that included the moduli of the 

asphalt, base, and subgrade layers; the thicknesses of the asphalt and base layers; and the 

cumulative traffic for each section. The accuracy of these models was measured by using the 

coefficient of regression (R2) between the predictions from the AI models and the actual data 

from the Pavement ME software for the testing datasets. The testing sets of the data were made 

from 40 percent of the dataset, and the remaining 60 percent of the dataset was used to train the 

models. The sections from the dataset chosen for the training and testing sets were selected 

randomly with Python code to reduce bias.  

As shown in figures 4.1, 4.2, and 4.3, the coefficients of regression of the testing sets for 

the neural network, random forests, and SVM models were 0.9991, 0.9999, and 0.9162, 

respectively, for predicting rutting. The coefficients of regression for the training sets of these 

models were not graphed because they all had a coefficient of regression of 0.9999. The decrease 

in accuracy between the testing sets and the training sets was determined to be negligible 

because they all decreased by only a minor amount. They likely all had perfect coefficients of 

regression for the training sets because the data were theoretical and thus easily captured by an 

algorithm. All of the test models proved to be fairly accurate, but the random forests model 

performed the best of the three test models. The random forests model outperformed the neural 

networks model, which typically required a larger number of samples to be adaptable to the 

testing data. Also, the SVM model was unable to adapt to the complexity of the problem as well 

as the random forests model could. This is exemplified in Figure 4.4, which shows that the SVM 

model did not mimic the intricacies in the performance decay model based on theoretical data to 

as high a degree as the random forests model. 
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Figure 4.1 Neural Network Prediction Accuracy for Total Deformation Using Pavement ME 

Theoretical Data 

 

 

Figure 4.2 Random Forests Regression Prediction Accuracy for Total Deformation Using 

Pavement ME Theoretical Data 
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Figure 4.3 SVM Prediction Accuracy for Total Deformation Using Pavement ME Theoretical 

Data 

 

Rutting increases with traffic because of the permanent deformation within various layers 

of the pavement structure Rutting versus the cumulative traffic and rutting performance over 

time (performance decay model) were examined for the test models. Figure 4.4 shows the change 

in rutting over time for the test models. In this particular example, the modulus values for the 

asphalt, base, and subgrade were 200, 15, and 7 ksi, respectively. The thicknesses of the asphalt 

and base layers were 2.5 inches and 8 inches, respectively.  
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Figure 4.4 Comparison of Total Deformation Performance Decay Curves Using Various AI 

Methods 

 

As shown in Figure 4.4, the random forests regression model fit the data much better than 

the other models. The model was able to predict and account for minor changes in rutting values, 

whereas the other models predicted change with smooth curves and were not able to capture 

minor changes.  

The results of the three test models demonstrated that the random forests regression 

provided the highest coefficient of regression and best captured the performance decay curve. In 

addition, the random forests regression model was also simple and straightforward, which 

minimized possibilities of user error. Therefore, this model was selected for predicting the other 

performance parameters such as cracking and IRI.   
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4.3 Performance Decay Models Using the Theoretical Data 

This section discusses the results of the performance decay models (i.e., rutting, cracking, 

and roughness) that used the theoretical data generated by the Pavement ME software. The 

models utilized the performance, material, and structure information for 266 test sections. The 

Pavement ME software predicted monthly performance over 20 years. Using this dataset, the 

total deformation (i.e., rutting), deformation of only the asphalt layer, IRI, bottom-up fatigue 

cracking, and top-down fatigue cracking were predicted by the random forests regression 

models. For all of these models, 60 percent of the data were used in the training set and the 

remaining 40 percent of the data were used in the testing set. The sections chosen for each data 

set were randomized in Python to reduce bias. To make predictions, they all used the thicknesses 

of the asphalt and base layers; the moduli of the asphalt, base, and subgrade layers; and the 

cumulative traffic on the sections. 

4.3.1 Rutting Prediction Models 

In predicting the deformation of only the asphalt layer of the pavement sections, the 

random forests regression model had an R2 of 0.9999 and 0.9997 for the training and testing sets, 

respectively. The difference in these accuracies was negligible because it was so small. Figure 

4.5 shows the correlation between the predicted rutting with the random forests regression model 

and rutting in the asphalt layer calculated with the Pavement ME software. The high prediction 

accuracy is attributed to the theoretical nature of the data, since the rutting in the asphalt layer 

was not measured but rather was calculated on the basis of material properties and pavement 

structure information.  

This model was also used to examine the increase in deformation of the asphalt layer as a 

function of traffic. An example of this decay curve is shown in Figure 4.6. The example included 

in Figure 4.6 has an asphalt thickness of 2.5 inches, a base thickness of 8 inches, an asphalt layer 

modulus of 200 ksi, a base layer modulus of 15 ksi, and a subgrade layer modulus of 7 ksi. 

Figure 4.6 shows the increase in deformation or rutting of the pavement section over a 20-year 

span as a function of the traffic with no surface treatments over the service life (i.e., 20 years). 

As expected, the rutting increased with traffic. The random forests regression model closely 

simulated the theoretical rutting data. Such rutting performance curves could be utilized to 

determine the most economical times to perform treatments on a given section. 
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Figure 4.5 Random Forests Predictions vs Pavement ME Asphalt Layer Deformation 

 

 

Figure 4.6 Asphalt Layer Deformation Decay Curve 

 

Like the deformation of the asphalt layer, the total deformation or total rutting for the 

entire pavement section was also studied with a random forests regression model. In predicting 

the total deformation, the model had an R2 of 0.9999 for the training set and an R2 of 0.9999 for 
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the testing set. There was no change in the accuracy between the training set and the testing set 

because the model was able to completely capture the relationship between total deformation and 

the input parameters for the entire dataset. However, this model would need to be trained with 

field data to fully investigate the complexities found in practice. Figure 4.7 shows the correlation 

between the predictions of the total deformation and the theoretical deformation for the testing 

group. 

 

 

Figure 4.7 Random Forests Predictions vs Pavement ME Total Deformation 

 

The results from this model were also used to create a decay curve of the increase in total 

deformation as a function of increasing traffic, as shown in Figure 4.8. The example shown in 

Figure 4.8 had an asphalt thickness of 2.5 inches, a base thickness of 8 inches, an asphalt layer 

modulus of 200 ksi, a base layer modulus of 15 ksi, and a subgrade layer modulus of 7 ksi. This 

figure shows the decay of the pavement section over a 20-year span as a function of the traffic on 

that section with no treatments applied over that period. 
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Figure 4.8 Total Deformation Decay Curve 

 

The random forests regression models were found promising for predicting total rutting 

as well as rutting of the asphalt layer. These models were able to capture minor changes in 

rutting of the theoretical dataset generated with the Pavement ME software. This indicated the 

potential ability of these models to capture changes in rutting in the field. However, they should 

be revised to capture the effects of surface treatments. The results clearly indicated that the 

random forests regression models work well with these types of data and predict deformation 

based on the input parameters. All the random forests regression models used for the rutting 

predictions are summarized and presented in Appendix C.  

4.3.2 IRI Prediction Results 

A random forests regression was also used to predict the IRI of the test pavement 

sections. This model had an R2 of 0.9999 for the training set and an R2 of 0.9997 for the testing 

set. The slight decrease from the training set to the testing set was not enough to indicate any 

concern for the generalization capabilities of the model. Figure 4.9 shows the correlation 

between the random forests predictions of the IRI and the Pavement ME IRI for the testing set.  
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Figure 4.9 Random Forests Predictions vs. Pavement ME IRI 

 

The random forests regression was also used to study the performance decay curve for 

IRI (i.e., the change in IRI) as a function of cumulative traffic on given sections. The IRI of 

flexible pavement increased with traffic because of the distresses induced by traffic and 

environmental conditions. Figure 4.10 shows an example of a performance decay curve for the 

IRI for a given pavement section. This section had an asphalt layer modulus of 200 ksi, a base 

layer modulus of 15 ksi, a subgrade layer modulus of 7 ksi, an asphalt layer thickness of 2.5 

inches, and a base layer thickness of 8 inches. The IRI curve spanned over a 20-year period 

during which no treatments or construction events were conducted on the section. 
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Figure 4.10 The Change in IRI with Traffic 

 

Given the results of the IRI prediction model, the random forests technique was able to 

predict IRI at a high accuracy for the Pavement ME dataset. Because this dataset was theoretical, 

it yielded a higher accuracy than if this model had been applied to field data, as discussed later in 

this chapter. Field data have more variability and follow a less clear pattern than the theoretical 

data used in this model. However, the use of the theoretical data in this model showed that 

random forests regression has a comprehensive understanding of this type of data and is able to 

recognize patterns in using structural pavement data and cumulative traffic to predict a 

pavement’s IRI at a given time. All random forests regression models used for the IRI 

predictions are summarized and presented in Appendix C.  

4.3.3 Cracking Prediction Results 

Random forests regression models were also developed to predict both bottom-up and 

top-down fatigue cracking. Cracking can be difficult to predict because it does not decay as 
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model, performance decay curves for various pavement sections could be obtained. These decay 

curves were functions of the cumulative traffic on the given section, and they spanned over a 

period of 20 years. Like the rutting and IRI models, no treatments or construction events were 

carried out over this analysis period for the test sections. One example of the performance decay 

curves for top-down fatigue cracking is shown in Figure 4.12. For this example, the pavement 

section had an asphalt layer thickness of 2.5 inches, a base layer thickness of 8 inches, an asphalt 

layer modulus 200 ksi, a base layer modulus of 15 ksi, and a subgrade layer modulus of 7 ksi. 

One can observe that once the top-down cracking started, it propagated downward at much faster 

rate than IRI or rutting, which changed gradually. Also, the maximum percentage of cracking 

predicted by the Pavement ME was about 80 percent.  

 

 

Figure 4.11 Random Forests Predictions vs. Pavement ME Top-Down Fatigue Cracking 
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Figure 4.12 Top-Down Fatigue Cracking Decay Curve 

 

While the R2 of the predictions against the Pavement ME data was high, there appeared 

to be more variance toward the lower and higher amounts of cracking, as shown in Figure 4.11. 

This was likely due to the data and not caused by an issue within the AI model. In the dataset, the 

top-down fatigue cracking stayed stable and then suddenly increased drastically. This is shown in 

Figure 4.12. This rapid increase ws difficult for the model to capture, and therefore, the 

percentage of cracking was overestimated in some of the sections before this jump. After this 

rapid increase, the top-down cracking reached a maximum predicted value of about 80 percent. 

In this instance, the AI model underestimated some of these values. This stability led to the 

model not being able to identify a pattern based on changing inputs as accurately because once 

the cracking percentage had reached a certain threshold, it remained stable regardless of the 

increase in cumulative ESALs. However, the model was still able to closely predict a section’s 

decay, as shown in Figure 4.12, so this slight variance was not of concern. The model also still 

accurately captured a high percentage of the dataset because these outliers represented only a 

small portion of the dataset. 

The issue of these outliers did not appear in the model developed to predict bottom-up 

fatigue cracking. While there also appeared to be a rapid increase in cracking at a certain point 
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reached 100 percent. This difference in the datasets indicated that the outliers when predicting 

top-down cracking were a result of the dataset and not the ability of the random forests 

regression models to predict cracking. The model developed to predict bottom-up fatigue 

cracking had an R2 of 0.9999 for the training set and an R2 of 0.9998 for the testing set. The 

correlation between the random forests regression predictions and the Pavement ME bottom-up 

fatigue cracking for the testing set is shown in Figure 4.13. 

An example of the change in bottom-up fatigue cracking or bottom-up fatigue cracking 

performance decay is shown in Figure 4.14. The pavement section shown had an asphalt layer 

thickness of 2.5 inches, a base layer thickness of 8 inches, an asphalt layer modulus of 200 ksi, a 

base layer modulus of 15 ksi, and a subgrade layer modulus of 7 ksi. The decay curve spanned a 

period of 20 years, and no construction events or treatments were conducted on the pavement 

section during this analysis period. This decay curve displays the model’s ability to accurately 

predict a pavement’s deterioration as a function of cumulative traffic on the section. 

 

 

Figure 4.13 Random Forests Predictions vs. Pavement ME Bottom-Up Fatigue Cracking 
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Figure 4.14 Bottom-Up Fatigue Cracking Decay Curve 

 

The random forests regression models were able to accurately understand and predict 

cracking for this dataset based on these results. This theoretical dataset may not have fully 

captured the nuances of field data. However, both models (bottom-up cracking and top-down 

cracking) were able to identify the point of rapid increase in cracking for the test sections, which 

indicates that they had a great understanding of the cause of these rapid increases. This suggests 

that the model would be able to identify this point in field sections as well, and it would likely 

also have a high degree of accuracy when trained and tested on sufficient field data. All random 

forests regression models used for the cracking predictions are summarized and presented in 

Appendix C. 
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pavements using field data. As described in the previous section, models were developed to 

predict rutting, IRI, and cracking. The data used were obtained from the LTPP database as 
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percent of the data were used in the training set and the remaining 40 percent were used in the 

testing set. The dataset contained 373 usable data points for the total deformation prediction 

model, 581 usable data points for the IRI prediction model, 433 usable data points for the fatigue 

cracking prediction model, 431 usable data points for the transverse cracking prediction model, 

and 433 usable data points for both of the longitudinal cracking prediction models.  The sections 

chosen for each data set were randomized in Python to reduce bias. These models used the 

thickness of each layer of the pavement structure, modulus of each layer, climatic conditions, 

and the cumulative traffic on the sections to make predictions. Figures representing the 

correlations between the models’ predictions and the LTPP field data were generated. Note that 

these sections did not include frequent data points with measured performance without 

application of maintenance or rehabilitation treatments. Therefore, detailed performance decay 

curves were not available; instead, discrete data points were available and used in model 

predictions.  These models considered major rehabilitation treatments on pavement sections by 

treating the sections as new after the treatment occurred.  This process still considered the 

cumulative traffic on the sections before any major rehabilitation treatment, but it “reset” the 

pavements’ age to zero years after the treatment occurred. This was done in an attempt to capture 

the effect that these major rehabilitation treatments may have had on performance.  

4.4.1 Total Deformation Prediction Results 

The random forests regression model developed to predict rutting of the LTPP sections 

had an R2 of 0.9578 for the training set and an R2 of 0.8123 for the testing set. The high R2 for 

the training set indicated that the model had a good understanding of the training set, and the 

decrease in R2 indicated that the data the model was trained on did not fully represent the data 

the model was tested on. The R2 of the testing set could have been improved by training the 

model on a larger number of samples. This could have been done by changing the ratio of the 

train-test split; however, given the relatively small number of test sections in this dataset, 

changing this ratio did not make a significant difference. It is also important to have a large 

enough test set to evaluate the accuracy of the model. The model could have been improved by 

including a larger number of overall sections in the dataset and giving the model more examples 

of sections to learn from. However, the accuracy with the test set was still relatively high, and the 

decrease in accuracy from the training set was not large enough to raise concerns about the 
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abilities of the model. Figure 4.15 shows the correlation between the random forests regression 

model and the LTPP dataset for total rutting or deformation for the testing set. 

 

Figure 4.15 Random Forests Predictions vs. LTPP Total Deformation 

 

In Figure 4.15, some rutting data are grouped at the vertical axis on every tenth of an 

inch. The reason is that the LTPP field rutting data were reported to the nearest tenth of an inch 

but the prediction model didn’t round the predicted values. This means that on the vertical axis 

representing the LTPP data, there is nothing measured between each tenth of an inch. While not 

all of the predictions perfectly represented the actual measures found in the LTPP data, the 

majority of predictions fell within one tenth of an inch of the true value. This indicated that the 

incorrect predictions were still somewhat understood by the model. The incorrect predictions 

included both overestimations and underestimations, so there was not a clear trend for these 

misses. Meanwhile, the results demonstrated that the model was still able to predict total 

deformation with a higher R2. This prediction accuracy could have been improved by increasing 

the number of samples in the dataset. All random forests regression models used for the rutting 

predictions are summarized and presented in Appendix C. 

4.4.2 IRI Prediction Results 

The random forests regression model developed to predict IRI had an R2 of 0.9498 for the 

training set and an R2 of 0.6844 for the testing set. This was a significant decrease from the 

training to the testing set and may have indicated that the model was overfit. Overfitting is when 
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the model is trained on a small number of samples that is not representative of all possibilities. 

Because the dataset was randomly split into the training and testing groups, it was unlikely that 

the samples were entirely unrepresentative of the whole. However, the number of samples was 

limited and therefore could not fully encompass all the possibilities. The high R2 for the training 

set indicated that the model had the ability to understand and predict IRI for field data, but it 

needed more samples to fully master predicting this measure. Training models on field data 

differs from training models on theoretical data because of the complexities within field data. 

These complexities (such as variability/inconsistencies during data collection) in field data make 

them less predictable. Figure 4.16 shows the correlation between the model predictions and the 

LTPP dataset for IRI in the testing set. 

 

Figure 4.16 Random Forests Predictions vs. LTPP IRI 

 

It is also important to consider that predicting IRI to an exact value is difficult. The 

model could have been improved by grouping IRI into separate categories (such as excellent, 

good, moderate, poor, extremely poor) and then having the model predict which category the 
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sections to the dataset. All random forests regression models used for the IRI predictions are 

summarized and presented in Appendix C. 

4.4.3 Cracking Prediction Results 

Random forests regression models were developed to predict fatigue cracking, transverse 

cracking, wheel path longitudinal cracking, and non-wheel path longitudinal cracking with the 

LTPP dataset. The model used to predict fatigue cracking had an R2 of 0.9021 for the training set 

and an R2 of 0.5815 for the testing set.  This significant decrease from the training set to the 

testing set was likely caused by issues similar to those of the IRI model. Figure 4.17 shows the 

correlation between the model predictions and the LTPP data for the fatigue cracking testing set. 

The dataset was weighted heavily by 0 ft2 of fatigue cracking, which likely affected the accuracy 

of the results. Finding more sections that contained fatigue cracking would have improved the 

accuracy. The models could also have been further improved by incorporating all maintenance 

activities. Our models only considered major rehabilitation treatments. By factoring minor 

treatments into the model, it would have been able to better capture the changes in cracking 

caused by these treatments. The random forests regression models did demonstrate the ability to 

predict these measures more accurately based on the high accuracy scored with the training set of 

these data. 

 

 

Figure 4.17 Random Forests Predictions vs. LTPP Fatigue Cracking 
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The model developed to predict transverse cracking had an R2 of 0.9525 for the training 

set and an R2 of 0.6859 for the testing set. This decrease in accuracy from the training to the 

testing set was likely due to the number of samples in the dataset, as in the other models that 

used this dataset. However, the decrease for transverse cracking was not as large as the decrease 

for fatigue cracking. This was likely because there was a better distribution of values in the 

transverse cracking measurements. However, the values were still largely distributed on the 

lower end of possibilities. This was likely due to the fact that field sections often receive 

treatments when conditions become too poor, so there was not a large representation of 

pavements in extremely poor condition. This was likely true for all the performance measures in 

the LTPP dataset because they would all be affected by construction on the sections. The 

correlation between the model predictions and the LTPP data in the testing set for transverse 

cracking is shown in Figure 4.18. 

 

 

Figure 4.18 Random Forests Predictions vs. LTPP Transverse Cracking 
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both were most likely due to the small number of samples in the dataset. However, the high 

accuracies for both of the training sets indicated that the models were able to understand the data 

enough to predict longitudinal cracking accurately but needed a larger representation of samples 

to produce higher accuracy for the testing set as well. Figure 4.19 shows the correlation between 

the model predictions and the LTPP data in the testing set for non-wheel path longitudinal 

cracking, and Figure 4.20 shows the same for wheel path longitudinal cracking.  

 

 

Figure 4.19 Random Forests Predictions vs. LTPP Non-Wheel Path Longitudinal Cracking 
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The results obtained from all the models using the LTPP data showed potential. The 

coefficients of regression for the training sets for all performance measures indicated that the 

models can predict these performance measures with high accuracy. However, all performance 

measures experienced a decrease in accuracy for the testing sets. This demonstrated that the 

models needed to be trained on more samples to obtain a larger representation of all potential 

data so that the models could more accurately predict field performance.  

The smallest decrease in accuracy from the training set to the testing set among all the 

LTPP trained models was with the model developed to predict total rutting. This was likely 

because rutting is the issue least affected by minor maintenance activities such as crack sealing 

or seal coats. It may also have been simply because the range of possible values in predicting 

total deformation was the smallest. The largest decrease in accuracy from the training set to the 

testing set among all the LTPP trained models was from the models predicting cracking. This 

was expected because cracking is a more difficult relationship to capture because of its 

complexity. The dataset also had the largest range of values in measuring cracking, which 

perhaps also could have contributed to this large decrease in accuracy. All random forests 

regression models used for the cracking predictions are summarized and presented in Appendix 

C.  
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Chapter 5 Conclusions and Recommendations 

This study aimed to develop artificial intelligence models to predict pavement 

performance indicators using material properties, layer thickness, and traffic data. Several 

artificial intelligence models were investigated to determine the best method to use with the data. 

Through this investigation, random forests regression models demonstrated the highest 

correlation between predicted and theoretical performance measures, and the predictions 

produced the most accurate performance decay curves of all the tested models.  

Next, random forests regression models were developed with a theoretical dataset 

generated by the Pavement ME software to predict rutting, IRI, and cracking. These models 

produced high correlations between the predicted and theoretical values for all performance 

indicators. The predicted performance indicators from these models were also used to create 

performance decay curves. Similar models were developed using a field dataset obtained from 

the LTPP program. Those models were also developed to predict rutting, IRI, and cracking. The 

models also produced good correlations between some of the measured and predicted 

performance indicators.  

The main findings of this research study can be summarized as follows: 

• Models developed with the theoretical dataset were able to achieve strong 

correlations (R2 = 0.99) between all predicted and measured performance indicators 

(IRI, rutting, cracking). 

• Predictions made by models developed with the theoretical dataset were used to 

develop performance decay curves. The predicted performance decay curves 

mimicked the measured decay curves for all investigated performance indicators. 

• Models developed with the field dataset were able to achieve strong correlations 

between the predicted and measured performance indicators for some of the 

indicators. The prediction models had R2 values of 0.81 for IRI, 0.68 for total 

deformation (rutting), 0.58 for fatigue cracking, 0.69 for transverse cracking, 0.54 for 

non-wheel path longitudinal cracking, and 0.48 for wheel path longitudinal cracking.  

• Models developed with the field dataset did not perform as well as the models 

developed with the theoretical dataset. This was most likely due to the theoretical 

dataset being larger than the field dataset and the exclusion of maintenance activities 

in the theoretical models. Models developed with larger datasets gain greater 
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adaptability toward testing sections and therefore can obtain higher correlations with 

measured data. The theoretical dataset was also designed so that there were no 

maintenance activities on the sections throughout their service lives, whereas the field 

sections had more variability and included many maintenance activities during their 

service lives. Major maintenance activities were accounted for in the models, but 

minor treatments on the sections could not be included in the models. Therefore, their 

effect on pavement condition was not captured, which decreased the accuracy of the 

models based on field data. 

The recommendations for future research can be summarized as follows: 

• Additional field pavement sections can be added to the dataset to increase accuracy 

and further validate the models. 

• Development of method(s) to accurately represent construction events on pavement 

sections to incorporate minor and major treatments into the models will improve their 

applicability. 

• Investigation of the relationships between different variables and performance could 

indicate the best parameters to include in the dataset to achieve the highest model 

accuracy. 

• Development of AI models based on larger quantities of test sections can improve 

their accuracy because their adaptability is dependent on the number of sections on 

which they are trained. 
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Appendix A Long-Term Pavement Performance Data 

This section contains 30 sample data points for the LTPP dataset formatted as they were 

when directly imported into the models. 

Table A.1 Extended Sample Data LTPP Dataset 

Section

_Age_ 

Years 

Subgrade

_Layer 

Type 

Asphalt_

Total_ 

Thickness 

KESAL_

CUMUL

ATIVE 

Asphalt_

Majority_

Material 

Base1_ 

Type 

Base_Total

_Thickness 

Climatic

_Zone 

Field 

IRI 

10 145 8.4 3555 1 321 36.6 2 79.77 

9 267 9.4 2389 1 308 18.7 2 114.36 

10 267 7.5 2832 1 308 18.1 2 46.76 

23 282 7.5 958 1 304 19.4 1 82.75 

6 215 7.6 395 1 304 6.8 1 60.83 

5 141 4.5 250 1 304 20.5 1 42.58 

25 214 10.3 2577 1 304 5.4 2 85.35 

5 214 11.5 3008 1 304 5.4 2 76.22 

19 267 9.2 887.5 1 304 3.7 3 61.02 

13 267 2.8 714 1 304 23.1 2 68.56 

18 282 7.5 726 1 304 19.4 1 68.87 

10 267 9.9 2832 1 308 19.1 2 68.05 

4 215 7.6 294 1 304 6.8 1 45.11 

22 282 7.5 902 1 304 19.4 1 83.64 

15 267 9.8 5224 1 308 18 2 58.92 

30 266 6 1462 1 304 19.2 2 82.94 
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Section

_Age_ 

Years 

Subgrade

_Layer 

Type 

Asphalt_

Total_ 

Thickness 

KESAL_

CUMUL

ATIVE 

Asphalt_

Majority_

Material 

Base1_ 

Type 

Base_Total

_Thickness 

Climatic

_Zone 

Field 

IRI 

16 255 4.3 1599 1 308 6.9 2 113.67 

6 265 7 780 1 331 42 1 95.48 

27 217 10.6 13596 1 308 18.2 3 76.79 

28 214 10.3 3284 1 304 5.4 2 99.29 

1 255 3.9 552 1 304 12.6 2 65.01 

3 114 4.1 19 1 303 46.4 3 59.05 

26 214 10.9 2824 1 304 5.4 2 97.7 

0 145 8.4 911 1 321 36.6 2 49.8 

17 267 16.1 346 1 0 0 1 121.33 

14 257 5.4 1435 1 304 12.9 2 83.38 

10 267 6 2832 13 308 18.8 2 51.38 

7 254 5.3 2022 1 304 5.3 2 83.13 

16 254 5.1 1693 1 308 9.2 2 58.92 

7 145 6.4 649 1 304 23.3 2 119.69 
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Appendix B  Pavement ME Data 

This section contains 30 sample data points for the Pavement ME dataset formatted as 

they were when directly imported into the models. 

 

Table B.1 Extended Sample Data for Pavement ME Dataset 

AC_ 

Moduli 

AC_ 

Thickness 

Base_ 

Moduli 

Cumulative_ 

Heavy_Trucks 

Base_ 

Thickness 

Subgrade_ 

Moduli 

Total 

Deformation 

Pavement ME 

200 2.5 15 238723 8 7 0.366 

200 2.5 15 291087 8 7 0.369 

200 2.5 15 343460 8 7 0.393 

200 2.5 15 564462 8 7 0.489 

200 2.5 15 629118 8 7 0.524 

200 2.5 15 759631 8 7 0.546 

200 2.5 15 826818 8 7 0.549 

200 2.5 15 939859 8 7 0.551 

200 2.5 15 1102780 8 7 0.56 

200 2.5 15 1159200 8 7 0.563 

200 2.5 15 1341970 8 7 0.609 

200 2.5 15 1408770 8 7 0.62 

200 2.5 15 1829840 8 7 0.633 

200 2.5 15 1887950 8 7 0.638 

200 2.5 15 2520320 8 7 0.68 

200 2.5 15 3111740 8 7 0.717 

200 2.5 15 3833920 8 7 0.742 

200 2.5 15 3961150 8 7 0.743 

200 2.5 15 4274080 8 7 0.748 

200 2.5 15 4565030 8 7 0.76 

200 2.5 15 5096280 8 7 0.766 

200 2.5 15 5240120 8 7 0.769 

200 2.5 15 5317560 8 7 0.772 

200 2.5 15 5476180 8 7 0.773 

200 2.5 15 5545290 8 7 0.774 
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AC_ 

Moduli 

AC_ 

Thickness 

Base_ 

Moduli 

Cumulative_ 

Heavy_Trucks 

Base_ 

Thickness 

Subgrade_ 

Moduli 

Total 

Deformation 

Pavement ME 

200 2.5 15 5611160 8 7 0.775 

200 2.5 15 5675560 8 7 0.776 

200 2.5 15 6011770 8 7 0.782 

200 2.5 15 6473470 8 7 0.804 

200 2.5 15 6743220 8 7 0.807 

 

 

 

 

 

 

 

 

 



 

C-1 

Appendix C Python Code Material Properties Based Models 

C.1 Random Forests Asphalt Layer Only Deformation Prediction Model Using Pavement ME 

Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config  

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/ABUDATA_RANDOMFOREST.xlsx',sheet_name='Input3_ACDeform'

) 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

target_column = ['Permanent_Deformation_AConly_inches'] 

traffic_column = ['Cumulative_Heavy_Trucks'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 
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#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

y_pred = rfr.predict(X_test) 

x_ax = range(len(y_test)) 

plt.plot(x_ax, y_test, linewidth=1, label="original") 

plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted") 

plt.title("y-test and y-predicted data") 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.legend(loc='best',fancybox=True, shadow=True) 

plt.grid(True) 

plt.show()  

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

plt.figure(figsize=(10,10)) 
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plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('True Values', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#Need to make sure labels are correct above for this to work...fix them before running the 

next block 

dfr3 = pd.DataFrame(X_test) 

dfr3.columns = ['Subgrade_Moduli', 'AC_Moduli', 'Base_Moduli','AC_Thickness',

 'Base_Thickness' ,'Cumulative_Heavy_Trucks'] 

print(dfr3) 

dfr3[predictors] = dfr3[predictors]*unnormal[predictors].max() 

dfr3["ACDeform Real"] = y_test 

dfr3["ACDeform Predicted"] = y_pred 

print(dfr3) 

dfr3.to_csv('AbuRF_ACDeform_Export.csv') 

C.2 Random Forests Total Deformation Prediction Model Using Pavement ME Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 



 

C-4 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config  

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/ABUDATA_RANDOMFOREST.xlsx',sheet_name='Input2_TotalDefor

m') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

target_column = ['Permanent_Deformation_total_inches'] 

traffic_column = ['Cumulative_Heavy_Trucks'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 
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y_pred = rfr.predict(X_test) 

x_ax = range(len(y_test)) 

plt.plot(x_ax, y_test, linewidth=1, label="original") 

plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted") 

plt.title("y-test and y-predicted data") 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.legend(loc='best',fancybox=True, shadow=True) 

plt.grid(True) 

plt.show()  

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('True Values', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#Need to make sure labels are correct above for this to work...fix them before running the 

next block 
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dfr3 = pd.DataFrame(X_test) 

dfr3.columns = ['AC_Moduli', 'AC_Thickness', 'Base_Moduli',

 'Cumulative_Heavy_Trucks', 'Base_Thickness' ,'Subgrade_Moduli'] 

print(dfr3) 

dfr3[predictors] = dfr3[predictors]*unnormal[predictors].max() 

dfr3["TotalDeform Real"] = y_test 

dfr3["TotalDeform Predicted"] = y_pred 

print(dfr3) 

dfr3.to_csv('AbuRF_TotalDeform_Export.csv') 

C.3 Random Forests IRI Prediction Model Using Pavement ME Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config  

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/ABUDATA_RANDOMFOREST.xlsx',sheet_name='Input1_IRI') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

target_column = ['IRI'] 
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traffic_column = ['Cumulative_Heavy_Trucks'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

y_pred = rfr.predict(X_test) 

x_ax = range(len(y_test)) 

plt.plot(x_ax, y_test, linewidth=1, label="original") 

plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted") 

plt.title("y-test and y-predicted data") 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.legend(loc='best',fancybox=True, shadow=True) 

plt.grid(True) 

plt.show()  

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 
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import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('True Values', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#Need to make sure labels are correct above for this to work...fix them before running the 

next block 

dfr3 = pd.DataFrame(X_test) 

dfr3.columns = ['AC_Thickness', 'Base_Thickness', 'Cumulative_Heavy_Trucks',

 'Subgrade_Moduli', 'Base_Moduli' ,'AC_Moduli'] 

print(dfr3) 

dfr3[predictors] = dfr3[predictors]*unnormal[predictors].max() 

dfr3["IRI Real"] = y_test 

dfr3["IRI Predicted"] = y_pred 

print(dfr3) 

dfr3.to_csv('AbuRF_IRI_Export.csv') 

C.4 Random Forests Top-Down Fatigue Cracking Prediction Model Using Pavement ME Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 
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import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config  

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/ABUDATA_RANDOMFOREST.xlsx',sheet_name='Input4_ACTop-

DownFatigueCrack') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

target_column = ['ACTop-DownFatigueCracking_%LaneArea'] 

traffic_column = ['Cumulative_Heavy_Trucks'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 
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set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

y_pred = rfr.predict(X_test) 

x_ax = range(len(y_test)) 

plt.plot(x_ax, y_test, linewidth=1, label="original") 

plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted") 

plt.title("y-test and y-predicted data") 

plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.legend(loc='best',fancybox=True, shadow=True) 

plt.grid(True) 

plt.show()  

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 
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plt.xlabel('True Values', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#Need to make sure labels are correct above for this to work...fix them before running the 

next block 

dfr3 = pd.DataFrame(X_test) 

dfr3.columns = ['AC_Thickness', 'Base_Thickness', 'Base_Moduli',

 'Subgrade_Moduli', 'AC_Moduli' ,'Cumulative_Heavy_Trucks'] 

print(dfr3) 

dfr3[predictors] = dfr3[predictors]*unnormal[predictors].max() 

dfr3["ACTop-Down Real"] = y_test 

dfr3["ACTop-Down Predicted"] = y_pred 

print(dfr3) 

dfr3.to_csv('AbuRF_Top-Down_Export.csv') 

C.5 Random Forests Bottom-Up Cracking Prediction Model Using Pavement ME Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config  

from google.colab import files 

uploaded = files.upload() 
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df = 

pd.read_excel('/content/ABUDATA_RANDOMFOREST.xlsx',sheet_name='Input5_Bottom-

Up_Crack') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

target_column = ['Bottom-UpCracking_%'] 

traffic_column = ['Cumulative_Heavy_Trucks'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

y_pred = rfr.predict(X_test) 

x_ax = range(len(y_test)) 

plt.plot(x_ax, y_test, linewidth=1, label="original") 

plt.plot(x_ax, y_pred, linewidth=1.1, label="predicted") 

plt.title("y-test and y-predicted data") 
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plt.xlabel('X-axis') 

plt.ylabel('Y-axis') 

plt.legend(loc='best',fancybox=True, shadow=True) 

plt.grid(True) 

plt.show()  

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('True Values', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#Need to make sure labels are correct above for this to work...fix them before running the 

next block 

dfr3 = pd.DataFrame(X_test) 

dfr3.columns = ['Subgrade_Moduli', 'Base_Moduli','AC_Thickness',

 'Cumulative_Heavy_Trucks', 'AC_Moduli' ,'Base_Thickness'] 

print(dfr3) 

dfr3[predictors] = dfr3[predictors]*unnormal[predictors].max() 
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dfr3["Bottom-Up Crack Real"] = y_test 

dfr3["Bottom-Up Crack Predicted"] = y_pred 

print(dfr3) 

dfr3.to_csv('AbuRF_Bottom-Up_Export.csv') 

C.6 Random Forests Total Deformation Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT1

_RUTTING') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['Rutting_Inches'] 

predictors = list(set(list(df.columns))-set(target_column)) 
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unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

  

rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 



 

C-16 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['Asphalt_Total_Thickness', 'KESAL_CUMULATIVE', 

'Section_Age_Years', 'Asphalt_Majority_Material', 'Base_Total_Thickness', 'Climatic_Zone', 

'Subgrade_LayerType', 'Base1_Type'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field Rutting"] = y_test 

dfr["Rutting RF Predicted"] = y_pred 

print(dfr) 

dfr.to_csv('LTPP_REGRESSION_RUTTING1_EXPORT.csv') 

C.7 Random Forests IRI Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 
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from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT1

_IRI') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['IRI'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 
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# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['Section_Age_Years', 'Subgrade_LayerType', 'Asphalt_Total_Thickness', 

'KESAL_CUMULATIVE', 'Asphalt_Majority_Material', 'Base1_Type', 'Base_Total_Thickness', 

'Climatic_Zone'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field IRI"] = y_test 

dfr["IRI RF Predicted"] = y_pred 
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print(dfr) 

dfr.to_csv('LTPP_REGRESSION_IRI1_EXPORT.csv') 

C.8 Random Forests Fatigue Cracking Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT1

_FATIGUECRACKING') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['Fatigue Cracking'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 
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df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 
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plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['Subgrade_LayerType', 'Climatic_Zone', 'Section_Age_Years', 

'Base_Total_Thickness', 'Asphalt_Majority_Material', 'Base1_Type', 'Asphalt_Total_Thickness', 

'KESAL_CUMULATIVE'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field Fatigue Cracking"] = y_test 

dfr["Fatigue Cracking RF Predicted"] = y_pred 

print(dfr) 

dfr.to_csv('LTPP_REGRESSION_fatiguecracking1_EXPORT.csv') 

C.9 Random Forests Transverse Cracking Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 
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df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT1

_TRANSVERSECRACKING') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['Transverse Cracking'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 
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import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['KESAL_CUMULATIVE', 'Asphalt_Majority_Material', 

'Subgrade_LayerType', 'Section_Age_Years', 'Base_Total_Thickness', 

'Asphalt_Total_Thickness', 'Climatic_Zone', 'Base1_Type'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field Transverse Cracking"] = y_test 

dfr["Transverse Cracking RF Predicted"] = y_pred 

print(dfr) 

dfr.to_csv('LTPP_REGRESSION_TransverseCracking1_EXPORT.csv') 
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C.10 Random Forests Non-Wheel Path Cracking Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 

df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT_

LONGITUDINAL CRACKINF_NWP') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['Longitudinal_Cracking_NWP'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 
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#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 

import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 
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plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['Section_Age_Years', 'Asphalt_Majority_Material', 'Base1_Type', 

'Base_Total_Thickness', 'Climatic_Zone', 'KESAL_CUMULATIVE', 'Subgrade_LayerType', 

'Asphalt_Total_Thickness'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field NWP Longitudinal Cracking"] = y_test 

dfr["NWP Longitudinal Cracking RF Predicted"] = y_pred 

print(dfr) 

dfr.to_csv('LTPP_REGRESSION_NWP_LongitudinalCRacking1_EXPORT.csv') 

C.11 Random Forests Wheel Path Cracking Prediction Model Using LTPP Data 

import numpy as np 

import matplotlib.pyplot as plt 

import pandas as pd 

import sklearn 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.datasets import load_boston 

from sklearn.datasets import make_regression 

from sklearn.metrics import mean_squared_error 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import scale 

import matplotlib.pyplot as plt 

from sklearn import set_config 

from google.colab import files 

uploaded = files.upload() 
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df = 

pd.read_excel('/content/LTPP_REGRESSION_RUTTING_10.20.22.xlsx',sheet_name='INPUT1

_LONGITUDINALCRACKING_WP') 

#Importing the data 

#If you edit the file and reupload make sure to erase the original file from the library 

print(df.shape) 

print(df) 

df.dtypes 

df.isnull().values.any() 

#if true, make sure excel file has no formulas (copy as values) 

target_column = ['Longitudinal_Cracking_WP'] 

predictors = list(set(list(df.columns))-set(target_column)) 

unnormal = df.copy() 

print(df[predictors]) 

df[predictors] = df[predictors]/df[predictors].max() 

print(df[predictors]) 

#df.describe() 

X = df[predictors].values 

y = df[target_column].values 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=40) 

print(X_test) #added this in 

print(X_train.shape); print(X_test.shape) 

set_config(print_changed_only=False)  

 rfr = RandomForestRegressor() 

print(rfr) 

rfr.fit(X_train, y_train) 

score = rfr.score(X_train, y_train) 

print("R-squared:", score) 

# Creating heat map for correlation study which will give us idea about study variables 

and their inter relationships 

#color is correlation 
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import seaborn as sns 

corr = df.corr() 

sns.heatmap(corr,  

            xticklabels=corr.columns.values, 

            yticklabels=corr.columns.values) 

y_pred = rfr.predict(X_test) 

plt.figure(figsize=(10,10)) 

plt.scatter(y_test, y_pred, c='crimson') 

plt.yscale('log') 

plt.xscale('log') 

p1 = max(max(y_pred), max(y_test)) 

p2 = min(min(y_pred), min(y_test)) 

plt.plot([p1, p2], [p1, p2], 'b-') 

plt.xlabel('Pavement ME', fontsize=15) 

plt.ylabel('Predictions', fontsize=15) 

plt.axis('equal') 

plt.show() 

#make sure labels match with columns...should be same as initial randomization but 

double check by multiplying a number by the max value of that column in excel and see if it 

exists 

dfr = pd.DataFrame(X_test) 

dfr.columns = ['Asphalt_Majority_Material', 'Subgrade_LayerType', 

'KESAL_CUMULATIVE', 'Base1_Type', 'Base_Total_Thickness', 'Asphalt_Total_Thickness', 

'Climatic_Zone', 'Section_Age_Years'] 

print(dfr) 

dfr[predictors] = dfr[predictors]*unnormal[predictors].max() 

dfr["Field WP Longitudinal Cracking"] = y_test 

dfr["WP Longitudinal Cracking RF Predicted"] = y_pred 

print(dfr) 

dfr.to_csv('LTPP_REGRESSION_WP_LongitudinalCRacking1_EXPORT.csv') 
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